The Southern Cliff in the Lagoon Credit: Julia I. Arias and Rodolfo H. Barbá (Dept. Fisica, Univ. de La Serena), ICATE-CONICET, Gemini Observatory/AURA
Explanation: Undulating bright ridges and dusty clouds cross this close-up of the nearby star forming region M8, also known as the Lagoon Nebula. A sharp, false-color composite of narrow band visible and broad band near-infrared data from the 8-meter Gemini South Telescope, the entire view spans about 20 light-years through a region of the nebula sometimes called the Southern Cliff. The highly detailed image explores the association of many newborn stars imbedded in the tips of the bright-rimmed clouds and Herbig-Haro objects. Abundant in star-forming regions, Herbig-Haro objects are produced as powerful jets emitted by young stars in the process of formation heat the surrounding clouds of gas and dust. The cosmic Lagoon is found some 5,000 light-years away toward constellation Sagittarius and the center of our Milky Way Galaxy. (Editor’s Note: For location and scale, check out this image superimposing the close-up region shown in today’s APOD on the larger Lagoon Nebula. Scale image is courtesy R. Barbá.)

The Southern Cliff in the Lagoon 
Credit: Julia I. Arias and Rodolfo H. Barbá (Dept. Fisica, Univ. de La Serena), ICATE-CONICETGemini Observatory/AURA

Explanation: Undulating bright ridges and dusty clouds cross this close-up of the nearby star forming region M8, also known as the Lagoon Nebula. A sharp, false-color composite of narrow band visible and broad band near-infrared data from the 8-meter Gemini South Telescope, the entire view spans about 20 light-years through a region of the nebula sometimes called the Southern Cliff. The highly detailed image explores the association of many newborn stars imbedded in the tips of the bright-rimmed clouds and Herbig-Haro objects. Abundant in star-forming regions, Herbig-Haro objects are produced as powerful jets emitted by young stars in the process of formation heat the surrounding clouds of gas and dust. The cosmic Lagoon is found some 5,000 light-years away toward constellation Sagittarius and the center of our Milky Way Galaxy. (Editor’s Note: For location and scale, check out this image superimposing the close-up region shown in today’s APOD on the larger Lagoon Nebula. Scale image is courtesy R. Barbá.)


NGC 1499: The California NebulaCredit & Copyright: Markus Noller (Deep Sky Images)
Explanation: What’s California doing in space? Drifting through the Orion Arm of the spiral Milky Way Galaxy, this cosmic cloud by chance echoes the outline of California on the west coast of the United States. Our own Sun also lies within the Milky Way’s Orion Arm, only about 1,500 light-years from the California Nebula. Also known as NGC 1499, the classic emission nebula is around 100 light-years long. On many images, the most prominent glow of the California Nebula is the red light characteristic of hydrogen atoms recombining with long lost electrons, stripped away (ionized) by energetic starlight. In the above image, however, hydrogen is colored green, while sulfur is mapped to red and oxygen mapped to blue. The star most likely providing the energetic starlight that ionizes much of the nebular gas is the bright, hot, bluish Xi Persei, just outside the right image edge. A regular target for astrophotographers, the California Nebula can be spotted with a wide-field telescope under a dark sky toward the constellation of Perseus, not far from the Pleiades.

NGC 1499: The California Nebula
Credit & Copyright: Markus Noller (Deep Sky Images)

Explanation: What’s California doing in space? Drifting through the Orion Arm of the spiral Milky Way Galaxy, this cosmic cloud by chance echoes the outline of California on the west coast of the United States. Our own Sun also lies within the Milky Way’s Orion Arm, only about 1,500 light-years from the California Nebula. Also known as NGC 1499, the classic emission nebula is around 100 light-years long. On many images, the most prominent glow of the California Nebula is the red light characteristic of hydrogen atoms recombining with long lost electrons, stripped away (ionized) by energetic starlight. In the above image, however, hydrogen is colored green, while sulfur is mapped to red and oxygen mapped to blue. The star most likely providing the energetic starlight that ionizes much of the nebular gas is the bright, hot, bluish Xi Persei, just outside the right image edge. A regular target for astrophotographers, the California Nebula can be spotted with a wide-field telescope under a dark sky toward the constellation of Perseus, not far from the Pleiades.